If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4y^2+3y+7=0
a = -4; b = 3; c = +7;
Δ = b2-4ac
Δ = 32-4·(-4)·7
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-11}{2*-4}=\frac{-14}{-8} =1+3/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+11}{2*-4}=\frac{8}{-8} =-1 $
| 4x+10+7x=-23 | | 7(z−79)=77 | | 42+4x+16=90 | | 3(s+14)=81 | | 2x+7+40=5x+-2+48 | | P+10+7p=-10-2p | | 1=m/4=-3 | | 3x+46=5x-14 | | 210=-15b | | 1,875+x=x÷0,3 | | 90=9x-9 | | 40=x/4+16 | | 2(g-59)=78 | | 3=6a-3a | | -x=18=3x-10 | | 2y+90+90+70=360 | | 1=m43 | | -3(w-3)-9w-9=4(w+2)-12 | | 3(p-75)=18 | | 210=15b | | 77=x+7×x+5 | | (7x+9)=90 | | | | 3+2x=52+15 | | 3y=4y^2-7 | | | | | | 11+6+4g=-2g+31 | | s+24/10=3 | | b+0,5-1,9b=0,2-2,7b+3,9 | | 12h-12h+3h-2h=9 | | 2x2-12x+26=10 |